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ABSTRACT

This report is a theoretical study of the problem of maintaining radio
communications in the presenceof electronic countermeasures. Spe-
cifically, certain idealized examples are considered in which the
problem is tode!Ase a detector, to be used with a certain type of
signal, which is as little susceptible to countermeasures as possible.
The criterion according to which performance is to be maximized is
a game-theoretic one; the applicability of this point of view is dis-
cussed in Sec. I. In Sec. 11 definitionsarestated. In Secs. Ill and IV
some elementary theory is presented and three examples are worked out.

It is the intention of the author to follow this report with another on
the some subject and the material of Secs. land 11 is designed to serve
as a foundation for this later report.
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SOME NOTES ON JAMMING, I

I. INTRODUCTIr

This report is a prcliminary study, from an alstract point of view, of radio cormmu-

ni,-ations in the presence of jamming or electronic countermeasures. The discussion is, in fact,

sufficiently abstract that it. might apply to other communication problems,, but all the motivating

examples come from the field of radio communications. We restrict ourselves entirely to cases

in which the messages are composed from two-letter alphabets (as is true for commercial tele-

type). This is done largely in order to obtain -- simple treatment, but it is felt that not much is

lost in idea in specializing from n-letter alphabets to two-letter alphabets.

I,, ordinary radio communications, reception is hampered by accidental interference,

man-made and natural. Presumably man-made interference can be nearly eliminated if neces-

sary. Natural interference cannot be eliminated, and its effects can be troublesome in certain

circumstances. In studying methods of minimizing natural interference, much use has been

made in late years of statistical methods. Thus receiver noise, although unpredictable, has

well-known statistical properties which can be deduced largely from a theory of its origin; prop-

agation disturbances caused by multiple paths or scatter phenomena are more difficult to get hold

of theoretically, but still some statistical Lnowledge of their behavior can be gathered which is

useful. In all such cases, something can bu done to reduce natural interference or its effects

because, although the precise behavior of nature may be unpredictable, trends and rough out-

lines of its future behavior may be established from a knowledge of its behavior in the past.

In military radio communications, reception may be hampered not only by accidental

interference but also by intentional interference (jamming or rlectronic countermeasures). In

some circumstances, particularly where communications are carried out over a short range,

accidental interference may do negligible harm and the whole problem is that of combating

countermeasures. In this report, we consider only this latter situation. There are some obvi-

ous differences between the situation with intentional interference and that with various forms of

natural interference which we want to emphasize.

(a) In some signal-plus-noise problems, probability distributions governingthe
noise signal are known a priori, It seems meaningleso to a.. ,,n orobability distribu-
tions a priori to any parameter governing a jammer's activity (except insofar as the
jammer is expected to choose an optimum strategy in a sense to be made precise be-
low).

(b) In communication problems involving multipath propagation, say, it seems
plausible to test the propagation characteristics of the channel simultaneously with re-
ceiving a communication. Then empirical distributions of appropriate parameters of
the channel can be obtained which may be of use in predicting its future variation. Al-
though informalion about a jammer can be obtained simultaneously with receiving a
jammed message, about the only value of this information is to show what the jammer
can do, not what he will do or is likely to do. Of course, intelligence may be at hand
describing thc possible range of his activities, and this can be an advantage to thecom-
municator.

(c) Natural interference may consist of the superposition of an unwanted signal
(noise) on the wanted signal or it may consist of some other type of perturbation of the
signal (as in multipath and scatter communication) or both. As yet, probably no one
can jiggle the mechanism of propagation through the ionosphere and troposphere; so,
for radio jamming, one need consider only the case where the interference consists
of a jamming signal superposed on the communication signal.

SECRET
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We have first to consider the conceptual problem of how to approach the communication-

through-jamming situation theoretically. We adopt the fullowing point of view: it is desired to
find from some limited choice of modulation-detection schemes one that will minimize the effect

of the most harassing electronic countermeasures the enemy can use. The phrase "limited

choice" is used simply because we do not hope to solve the problem in full generali'ty; the phrase
"can use" )s meant to imply that there is some sort of limitation, usually a cost lirnitation, on
the measures available to the enemy. This notion can be expressed in symbols. Suppose the

modulation and detection schemes available can be indexed by a variable ý, and the counter-
signal schemes available can be indexed by a variable q. Let M be a figure of merit for the com-

munieation; M is a function of t and T1. Now, if ý and ,1 completely determine the mechanism of
communication and the countersignal, then M is an ordinary (real-valued) function of ý and T;

if, on the other hand, ý or Tl indexes a communication or countersignal "scheme" in the sense

that it specifies a probability distribution for certain parameters which are allowed to vary, then

M is a random variable. (The second use of the indices includes the first if one allows singular
probability dist r ibut ions.)

To get a numerical-valued figure of merit, one may take

r ,, )= E i ... ,

In particular, let M(ý,-1) be one if the signal is cor-'ectly received, and zero otherwise. Then

MV tn )=P( ,,r)

is the probability of correctly receiving a signal; this is the figure of merit we shall use. Now,
"according to our intention as postulated above, we seek a ý* such that

min P(ý*,ri)

is as large as possible. Since the enemy does not know which • is chosen, he seeks an i1* such

P; that

max P{t, *)

is as small as possible. This formulation leads to notions already current in the theoryofzero-
sum two-person games, and we shall, in the sequel, adopt the terminology and use some results
from this theory. We call the team of communicators player I and the enemy, player II. g and

Sare the mixed strategies of players I and IT, respectively. P( ý,'l) is the payoff function, and ,•e
may say that II pays I since it is for I's advantage to have P({,il) as large as possible, and to II's

advantage to have P(4,ri) as small as possible. We let IT designate the transmitter of the com-

munication team and IR designate the receiver. In the games we shall form with payoff function

P(t,rl), the upper value of the game becomes the smallest probability of correct reception that
the jammer can guarantee, and the lower value becomes the greatest probihility of correct re-

ception that the communicators can guarantee. A good strategy for player I specifies a commu-
nication scheme optimum within a given class of schemes; a good strategy for player TI specifies

a type of co.'ntermeasure optimum within a given class.

SECRET
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In the last paragraph, we have, in a rough general way, set up an abstract problem

which is to represent the real-life comnmunication-through-jamnrning problem. This formulation

is not a thing to be proved or disproved mathematically; the author feeis it is one reasonable

formulation. The essential point is, of course, that we are adopting a minimax-type criterion.

How can one beat jamming? ;irst, by finding the best communication system among

those available so as to maximize the probability of correct reception per signal; second, by

using repetition or some form of redundancy.

If the communicator is limited to systems in which, at best, he cannot get a satis-

factory probabi lit. of correct reception per signal, then so lor,. as this probability is strictly

greater than one-half, by repeating the signal enough times he can get an over-all probability of

correct reception as close to one as desired. Thus, if in a given situation one can find ý* such

that P(ý*, 1) > 1/2 + E for all TI, ideally the communicator can beat the jamming if he can afford

the necessary redundancy. In practice, this meanr, of course, if his time-bandwidth product is

sufficiently large. On the other hand, P({,-.q) can be raised, in general, if the number of avail-

able communication schemes can be enlarged; the communicator, by having more alternatives at

hand, can force the jammer to "scatter his shot." This again means in practice, the greater the

time-bandwidth product usable by the communicator, the better his chances of combating jam-

ruing. We shall discuss specific problems in Sec. IV of this report where P(t*,-I) is very little

greater than one-half and repetition is necessary. In Part II (to be published) we shall discuss

"coded" systems (see Sec. II of this report) for which the redundancy is built in the form of a

large number of alternatives for the communicators.

II. DEFINITIONS

A signal space is a set X closed under a commutative binary operation which we de-

note by +. A countersignal space is a subset Z of X. A message is a sequence of MARKS and

SPACES. Given a signal space X andcountersignal space Z, acommunicationfromT tolRcom-

prisesthe following sequence: IT is in possessionofa message n = 1, ... N, 'n = MARK

or SPACE, ,""ich he maps into a sequence xn , n = 1. N, in = 0, 1. of elements from X

(or signals). Ai adds an element zn * Z (or countersignal) to each Xn.. IR receives the sequence

iXni + Zn11, decides for each n whether xn + zn represents a MARK or SPACE and translatesnn .
his sequence of received signals into a message. It is understood in advance by IR that Xn is

to represent a SPACE at the nth place and xn is to represent a MARK; i. e., the sequence of
1.

mappings used by IT to go from M and S to the signal space are known to IR They are not nec-

essarily known to 1I. II never knows when he adds zn to xn whether the i at the nth place is a

zero or a one. There are two natural subcases of the class of communications described above.

The first is the known fixed signal which is discussed in this report and the second is the coded

signal to be described in Part II (to be published).

A. Known Fixed Signal

Xn0= x 0 E X for every n and xnl = x 1 C X for every n. x 0 and xI are known to 11 as

well as to IIR Conventional radio telegraph or teletype. systems belong in this category.

3
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B. Coded Signal

x1 o is, in general, different from xmo, n • m, and xn I is, in general, different from

x II does not know xn and s for any n. Thus I and I must have a "code," not known to
Tl and nR mus haeaRoe"o'kont

II, for ciphering messages into sequences of elements from X, and deciphering.

Fundamentally, detection is thc process of translating elements from the signal space

into MARKS and SPACES; it is the function IR must perform on each received signal in order to

reconstruct the message. However, we sometimes want to allow detection procedures which give

a translation "either MARK or SPACE" or even "MARK with probability p or SPACE with prob- Z

ability (I - p)" to some element of X. Such "detection" can be meaningful in cases where there is

repetition or redundancy. Thus, a detector is represented mathematically as a functional on X

taking on at least two and perhaps a continuum of values. However, for reasons that will become

evident, we state a formal definition of detector, to be used below, in a slightly different form.

A detector is an n + 1-tuple (fl., fn' D) where fl, . fn are real-valued func-

tionals on X, and D is a decision-valued (taking on two or more values) function on the subset of

Rn which is the image of fl,.... f' We shall sometimes call (fl f. n) the filter, and Dthe

decision function. Two filters (f . ). (gl .,.. gm) are equivalent for a given signalspace

X if for any decision function D to be used with (fl . fn) therc is a decision function D' to be

used with (gl .  gm) which yields the same decision for every x ( X and conversely.

Remark 1: Two filters f = (fl ... f ) and g = (gl, gm) are equivalent if and

only if for every x and y c X for which f(x) f(y), g(x) = g(y), and vice versa.

Proof: Take D' as given by D'[g(x)] = D[f(x)], x c X. The proof that D' is a decision func-

tion is obvious.

11. EXAMPLES

Example 1: Keyed Carrier 3

This is a fixed signal system in which the presence of the RF carrier indicates a

MARK and its absence indicates s SPACE. Precisely, the nth letter of the message is mapped into

the zerofunctionoft, (n - l)T_< t< nTif it is a SPACE andinto, say, Acos wt, (n - I)T < t < nT

if it is a MARK. For a per-signal analysis, we need consider only the interval [0, T], then x0 = 0,

0 < t < T, xI = A cos wt, 0 < t < T, The signal space X may be taken to be the class of all func-
tions of integrable square on [0, T] (we write this L. [0, T]), and the counter signal space Z to be

a subset of X to be specified.

The choice of the signal space X is somewhat arbitrary in this example, or indeed

in any fixed symbol system. The signals are real-valued functions of a real variable t over a -

finite interval [0, T] and obviously the countersignals should be also. Hence X will be a space of

real-valued functions on [0, T]. The operation + should be ordinary pointwise addition of func-

tions because the electromagnetic field components that the signals x and countersignals z rep-

resent add this way. X must include all functions of the form xi + z, i = 0, 1, z E Z and, for

convenience, we have required in our definition that x 0 , x1 I X and Z C X. It is convenient to

choose X to be a linear space, and since the L 2 -norm of a signal function can be interpreted

immediately to be the energy of the signal, and sincc we shall suppose all signals to be of finite

4
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energy, L. [0, T] will do as a choice for- X. L 2 [0, T] is really too large, but for the fixed signal

case this does not matter very much, for it means only that the filter of the detector be defined

on an unnecessarily large domain. The choice of the countersignal space Z is more delicate

since it reflects the latitude we allow the opponent, player II. It is reasonable to suppose that II

is limited to a finite energy a per signal, so every z c Z must satisfy

f 0T 2
z T (t) dt •< a

We could let this be the only restriction on z (we do this in a later example) and so take Z to be

the subset of L. [0, TJ contained in the sphere of radius a. Howeer, here we further restrict Z;

in fact we require in addition that

Sz(t) x1 (t) dt = 0

for every z 1 Z. The motivation for this requirement is as follows: in practice T is likely to

include a great many periods of cos wt so that signals of different frequency will be nearly or-

thogonal to cos wt. Even if the enemy attempts to send a signal with a cos wt component and his

frequency is slightly off or there are occasional phase drifts due to shifting propagation condi-

tions, then his countersignal will still actually be nearly orthogonal to cos wt over [0, T]. Note

that this is equivalent to saying that we may expect the energies of the signal and countersignal

to add. To avoid giving an unrealistic advantage to the communicators, we shall require, when

we discuss detectors for the keyed-carrier type of communication, that the receiver is no better

able to duplicate the phase and frequency of the transmitter carrier than is the jammer.

Example 2: Frequency-Shift Keying

a, This is a fixed-signal system in which

0. X 0 (t) = A cos wot

O~t <T
x xI Mt) A cos w.< t <

We shall suppose what is nearly true if •- 4 w 1 ' that cos w0 t and cos w1 t are orthogonal over

[0, T1. We again take L, [0, T] for X, and for Z we take that subset of X consisting of elements

"z which satisfy:

2J z (t) dt .< a

zMt) cos wot dt = 0

z(t) cos w t dt = 0

j The justification of these choices of X and Z is the same as in Example 1.

1 5
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Example 3: Correlation Detection

We want to consider both a fixed-signal system and a coded-signal system. In the

fixed-signal system [Example 3 (a)] we take

x = -x(t 0

0 < t < T Example 3(a)
xl x(t)

X = L 2 [0, T] and Z that subset of X consisting of all elements z satisfying

'z 2 Mt dt •< a

We call this example the "correlation detection system" because the phase sensitivity of the de-

tectort required by the type of signals postulated is conventionally obtained by using a so-called

correlation detector. It will turn out that this example is ideally a natural one, since only linear

filters need be considered in the detector.

h:xcnmple 3(h) is the same as l(a) oxcept that X, atd hence Z, is to be further re-

stricted and

Xn0  -Xat

(n - 1) T < t < nT Example 3(b)
X Xn (t) J

where xn (t) X and is not known to the enemy. We shall specify X and Z in the section devoted

to this example.

IV. t"IXED-SIGNAL CASE

For fixed-signal communication, the communicators have freedom only to specify a

"receiver or detector in an effort to outwit the jammer. This is the case discussed in this sec-

tion.

The appropriateness of the mathematical notion of a game in the study of communi-
cation through jamming was argued in the introduction. For convenience, we now introduce the

term D-game to mean a zero-sum two-person game which has a payoff function taking or values

only between zero and one, including zero and one.

The games we discuss are D-games in which there is a one-to-one correspondence

between pure strategies for Ii and countersignals z and, in this section, between pure strategies
for I and detectors D. To be succinct we shall refer to a "strategy z (or D)." If in a particular

context D = (f, d) and the filter f is fixed while the decision function d is free, we shall refer to

a "strategy d." Before investigating the examples introduced in the preceding section, we set

down precisely a few rather obvious general facts about the kind of game we are considering.

We use a simple concept or equivalence between games;* briefly, (1) games G and G' are

"*See Blackwell and Girshick, Theory of Games and Statistical Decisions (John Wiley, New York, 1954), p. 1 1

for a formal definition.

6
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equivalent if an elimination of duplicated strategies foi either one of I or II in G yields G', and

(2) G and G' are equivalent if there is a finite chain G, GI . G G , G' such 1hat each ad-

jacent pair satisfies (M). This sort of equivalence preserves lowcr value v,, upper value v*, and

value v (if it exists). We are especially concerned with lower value because it is the highest

Sprobability of being correct that I can guarantee hiniself.

Remark 1: If f - g, then for any 1)-game with fixed fitter f, there is an equivalent

D-ganie with fixed filter g.

Proof: It is obvious. We say the filter f is finer than the filter g with respect to X if for

every x, y c X for which g(x) @ g(y), f(x) :ý f(y).

Remark 2: If f is finer than g, there exists a filter g -, g such that for every • in

the image of • there exists an x• g (t) for which

fQX) =

Proof: Choose x to be any point in g-(a). Define by

g ¢g-(0 = rlxg

X, " obviously satisfies the staLiteent. We shall say f contains ý.

I." Remark 3: If f is finer, than g, given any set S of strategies for II, if there exists a

D-game using S and g with lower value v,. then there exists a D-game using S and f with lower

value v', >, v,.

Proof: Choose g- g and contained in f by 2. Let G be the game using S and g. Then by I,

there is a game G using S and g equivalent to G, and hence with lower value v,•. Now form a

D-game G' using S and f where a subset of I's strategies are obtained as follows: for each d in

P, define d' in G' by d' ff(x)] = ) if x g (f). Then I has available in G' every strategy he had

"available in G, hence the assertion.

Remark 4: Let f contain g, and x 0 and xI be fixed. Let X C X be the set of points

"on which f and g agree. Suppose there exists Z C Z such that

(a) x 0 + z c X for all z Z, Ix + z X for all z Z.

(b) For every g for which x 0 + z ( g- () for some z c Z, there exists

c z .sch that x 0 + z , g I (g).

The same condition exists with x0 replaced by xI. Then given a D-game G with II's strategies

any subset S of Z, with any set of strategies for I using f and with lower value v,. there exists

a D-game G' with I using g with lower value v', , >V,.

Proof: Restrict G by allowing II pure strategies only from S Z. Call this restricted
game G. Then the lower value v. of G is not less than v*. Since in G the only elenments of Xthat
can occur are of the form xi + z, i = 0, 1, and for these f and g take on the same "alues, I can

replace f by g and his set of strategies remains unchanged. Thus G can be realized with I using

g. Finally if II now replaces the strategies S n2C a game G' is formed equivalent to G, sinceI each strategy in S fl •C is equivalent to one in S f Z. Hence v'*. v*.

7

SECRET

' ,: ,,i . . ,,



SECRET

Remark 3 makes the obvious point that if the communicator allows himself more

complicated detectors, he will not lose anything. lRemark 4 shows that in -pnipl eiri-urmstnnres

there is a kind of complication that also will not gain him anything provided, of coui'se, that the

enemy uses his wits.

We have need in the sequel to bound the value of a game from above. The following

-,'ery simple estimate is useful.

"Remark 5: Let F be a zero-sum two-person game with payoff function P(a, P) defined

on the rectangle [0, a] x [0, b], a denotes a pure strategy for player I, P for I1; G denotes a mixed

strategy (Stieltjes measure) for I. F' for II. We suppose II pays I. Then if there exists a meas-

ure F(, such that

fP(a, b) dF 0 (p) < k

for all c,v,5 ._ k.

Proof: v, = sup inf dG(a) Pc) dF()
G F f f

Let G be a strategy such that

rA

dG (a) 3) dF(3) > v - c for all F J

Then in particular,

v•,- c < fdG (a) k = k

This relation is independent of E, hence v* <k.

Keyed Carrier (Example I of Sec. Il1)

We have already assumed that any countersignal available to II is orthogonal to x 0 (t)

on [0, T]. This assumption was not made to simplify the problem, for it does not. Indeed, Ex-

ample 3 is essentially the same as this one with this assumption removed. It was made to cover

cases in which it is unrealistic to suppose that the enemy can duplicate the frequency and phase

of the carrier- signal. In such a case, the receiver could ideally tune out the countersignal and

perfect communication would result. But this is unrealistic (unless we are dealing with an in-

ferior enemy). So we suppose that there is a (narrow) band of frequencies containing the carrier

frequency which the receiver cannot tune out, and, in fact, which the receiver cannot further de-

compose which is available to II. That is, we shall suppose that the only characteristics of a

signal appearing in this band which the receiver can determine are those that are functions of

amplitude.

The situation may be idealized as follows: Let L(xz) be the linear subspace of

L 2 [0, T] generated by x 2 , let M be a linear subspace of L 2 [0, T] containing L(xI) and let N be

the orthogonal complement of L(x]) in M. We shall suppose that if x and y both belong to M and

SECRET
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xf1.H1 f (t) dt 112 y2 (t) dt =/ ,

then for any available filter f, f(x) = f(y).

Let the filter fo be defined as follows:

write y LZ [0, T]as y = yM+ y., where YM M Y Me (the orthogonal comple-

ment of MI in L. O, TI), then f0 (y) = IM I I.

Remark 6: Let f be any filter containing f0. Then the conclusion of Remark 4 holds

with g = f0
Proof: By hypothesis f and f0 agree on M so X = M. Let Z' = N. Then the conditions 4(a)

and 4(b) are satisfied.

Thus, within the restriction that we have set, the simple filter which projects on a

linear subspace and then determines norm is as good as any against jamming. The obvious

physical device to approximate this abstract "filter" is a flat bandpass filter (filter in the usual

sense) followed by a square-law device. We may now, in this example, confine our attention to

D-games in which I uses f0 and II takes all his pure strategies from N. The decision functions

used by i will have for domain some subset of the positive real line; in particular, if we take

11x 1[12 -= I and limit II's power, i.e., consider only z for which IIz 112 <-a, the domain of the de-

cision functions will be the interval [0, a + I] . We now use Remark 5 to find an upper bound on

v* for any D-game in which I uses f0 and II uses strategies from N. Notice that II may confine

his strategies to a one-dimensional linear subspace of N and hence that his strategies may be

indexed by the set of real numbers [0, a).

Remark 7: Let G be a D-game with x 0 and xI as specified in this section in which I

uses the filter f0 and II's strategies are of the form az 0 , z 0 ( N, a a real number, where2

[(z 0 )112 -< a. Then the lower value of G is less than or equal to 1/2 + 1/2a.

Proof: Let [ z0 12 =I 1, and map II's strategies onto the interval [0, a] by carrying az 0 - a.

Let d be the decision function corresponding to any particular strategy p of I. Then if II uses

the pure strategy a, the payoff is

Hence, d + 1) ++ [Il d~f1'

S• P{Oa} de iaa d (a + 1) +[ -d,(a)] da..< +---
a 0 P(P, a) a- 2EJ 1 d~ a~ ~ d 2  Za

for all P. The conclusion follows from Remark 5.

Remarks 6 and 7 together assure us that in a fixed-signal keyed-carrier system with

ratio of jamming power to signal power equal to a and under the restrictions on receiver and

jammer which were imposed, the communicators cannot guarantee themselves a probability per

symbol of being correct greater than I/? + 1/Za.

We now exhibit a particular game of the type being discussed which has a value nearly

achieving this bound. A good mixed strategy for I in this game, one of which.we shall show,

specifies a nearly optimum detection scheme for the communicators,
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For any I3 >. 1 we define d1 as follows:

d 3(s) =0, 0.s <

That is, we call the signal a MARK if the output of the filter is greater than or equal to p, and a

SPACE otherwise. The pure strategy 1P for I is then the strategy corresponding to the detector

ol d. Since the received signal is of the form y x. + J-a z 0 , f0 (y) =6 + a, 6 = 0 if x0 , 6

*if X 0< a.<a It follows then that for strategy I for I, the payoff as a function of a is given

by

0~ < P-

3-l.a<P P=1

. a P =

We shall call this game G1 . It follows from a general theorem that this game has a value,* how-Ii

ever, we shall show this fact directly. If a game G1 is formed from G1 by removing some of I's

strategies while leaving Il's strategies unchanged, and if G' has a value v', then v' v*, the

lower value of GI; similarly, if a game (; is formed from GI by removing some of II's strat-

egies while leaving I's strategies unchanged, and if G" has a value v", then v" >,v*. We shall

find finite games G• and G,' which therefore have values, such that v' = v"= v. Good strategies

for G, and G" are then good strategies for GI. This technique amounts to no more really than

making a shrewd guess at good strategies and then testing them.

Iftn - I _< a < n, n a positive integer, form GI by allowing I the set of pure strategies

, n}, i.e., 1 1, P = 2, etc. The resulting game is easily seen to be equivalent to a

finite game with the following payoff matrix.

1 .1

-2 2

uI p

This game has value

,n-l 1 1nv • = n - Zn

*S. Korlin, Contributions to the Theory. of Games (Princeton University Press, 1950); Vol. I, "Operator Treat-
ment of Minimox Principle:

10
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and a good mixed strategy for I is that which weights evenly each pure strategy. Form G1 by

allowing II the set of pure strategies 0, 1, n - I. GI is easily seen to be equivalent to a

r,. finite game with exactly the same payoff matrix as above; hence

" +v" = nv

To summarize, the detection scheme specified by (f 0, d )where is chosen ran-
domly with a uniform distribution from the integers I. n, n - I •<a < n, where f and d

are as defined above will guarantee the communicators a pcr-signal probability of being ccrrect

of 1/2 4 I/2n. No other available filter will do better than f0, and no decision scheme exists

which will make the probability greater than 1/2 + 1/2a. Whether or not this value can be

achieved is left an open question.

Frequency-Shift Keying (Example 2 of Sec. III)

The discussion concerning the previous example is largely applicable here. We let
L(xi), i = 0, 1, be the linear subspace of L, [0, T] generated by xi; Mi, i = 0, 1, be a linear

subspace properly containing L(xi), and Ni, i = 0, 1, be the orthogonal complement of Ni in M.

L We suppose M,, is orthogonal to MI and that Z is a subset of N1 + NO. Let f be a filter defined

a's follows: L = (f0' f 1 where fo(x) and f (x) are the norms of projections onto M0 and M 1 , re-

spectively. That is, f0 and fI are defined exactly as was f in the previous example.
A 0

Remark 8: Let f be any filter containing f. Then the conclusion of Remark 4 holds
A

Z. with g .

Proof: Let the Z of Remark 4 be N = NI.

In this example there are two reasonable constraints on jamming power: (1) the total

power in both MARK and SPACE channels may be limited and (2) the power in each channel may

be limited individually. In either case, we can get an upper bound on v, in the same way as in

the preceding example.

Remark 9: Let G be any D-game in which II uses strategies z = az 0 + 1Az, z 0 c No,A0
:.•i Zl NI, IzO 11 .< a II 2zl 1 2 a, and in which I uses f. Then
11 1

2aSa 2a2

Proof: Let d(y0, yl) be a decision function, then by Remark 5,

a_ foa foa d~zo + 1, zI) + I - d(z 0 , ZI + 1)} dz dz
a 0 0 2 0o1

1+1 1

Xl The same bound can be obtained in essentially the same way if the constraint,,lzllz = a is im-

posed. It would seem that I .- ,,,it to be able to guarantee himself a higher payoff in this example

than in the first one, and the above estimate of v* perhaps strengthens this supposition. I have

not yet, however, worked out a game showing this. It is trivial to des, ribe a game and strategy

g11
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in which v is asymptotically 1/2 1 /12a. In fact, if MARK and SPACE are detected independ-

ently, each as in Example 1, there are available after each signal two judgments as to what the

signal was. If (M, M) is called M, (S, S) is called S, and (M, S) and (S, M) are called no decision

(equally probable MARK or SPACE) then the payoff is exactly as in Example I.

"Thus, for the idealized FSK, we can specifY an optimum filter'and a mixed decision

function that will guarantee exactly as good detection as guaranteed by tile detector specified for

the previous example. The question of a best or, even an asymptotically best mixed decision

function is left open.

Correlation Detection (Example 3 of Sec. III)

In this example we suppose that the receiver can duplicate not only the form of the

transmitted signal but also its phase. In order to make the situation interesting, we suppose

that the enemy can do the same. Again X = L 2 [0, T] with + being ordinary linear space addition;

Z is a subset of L-.2 0, T], and the only restriction that need be impnqed on Z is that II zfl z--< a,

z ( Z. We assume x= x(t), 0 < t < T,

0 x (t) dt = I

and x 0 _-x(t). Let f be the filter defined by

f y) = x(t)y(t) dt

This filter is as good as any from our point of view.

Remark 10: Let f be any filter containing f. Then the conclusion of Remark 4 holds

with g = f.

Proof: Let the Z of Remark 4 be the one-dimensional linear space spanned by x 1 ,

Remark 11: Let C be any D-game in which II uses strategies z = ax 1 , a 2 ,< a. and

in which I uses f. Then

V 1 +

Proof: Let d(y) be a decision function, then by Remark 5

SI + ad(z + 1) + I -d(z - I) dx

We now construct a D-game in which II can guarantee himself a probability of being

correct which is asymptotically equal to the upper bound established in Remark 11.

Let I use the filter f. Then since f'(y) is a real number for any y t X, the domain of

definition of the decision functions to be used by I is the real line. For each 1 > 0 define a de-

cision function d as follows:

t SECRET
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Sd , <-13

= I , >

Players I's set of strategies is the interval [0, o]; choice of strategy 1, B [0, co] means that
11 2

player I uses the detector (f, d&. Player It chooses a counter signal iax a e a. Since x = x0

or x: each with probability one-half, it will be evident that the sign of a is immaterial. Il's set

of strategies is the interval [0, %/':]. The payoff P as a function of a and 13 is given by the follow-

ing table.

1<1I -~a l+1 P 3,14

13<1 +•3<-a P--/2

>, <a I3- P~ 1/2

S3 I 1 13 - I < a.< 1 + [ P 3/4

13> 1 1 + I <a P 1/2

A diagram of the "matrix" of the game is:

%f--

Player II's

Strategies "

k 0

Player I's Strategies

F

f where the values of the payoff on the dividing lines are given by continuity to the left. That this

game has a value can be shown by Karlin's theorem.*

We list some conclusions about this game, all of which can be obtained from elemen-

tary-axju~ments:

(I) The value v of the game is monotonic nonincreasing as a becomes larger.
This is true because, given a < a 2 , the game with a1 is a reduction of the game with
a 2 obtained by restricting II's strategies but not restricting I's.

(2) If a < 1, v = I and a good pure strategy for I is do.

(3) If 2n- I < r < 2n + l, n = 1, 2 .... an upper bound for the value of the
game is 1/2 + 1/4n. To show this take a1I 1, a 2 =t3, an - 2n - 1. The resulting re-
duced game is equivalent to a finite game for which the value is easily seen to be

5 • 1/2 + 1/4n.

*See Footnote, p. 10.
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(4) If 2n- -I %'a'< Zn, n = 1, 2. alower bound for the value of the game
is !/2 + 1/4n. To show this, take Ol 1 - (2n - N2a), 12 = 3 - (Zn- %fa-.... n
(Zn - I) - (2n - 4-a) = .fa- 1. The resulting reduced game has value 1/2 + 1/4n. A
good strategy for I is the mixed strategy which assigns weight I,/n to each Pi. It follows
from (1) that 1/2 + 1/4n is also a lower bound for the value of the original game if
2n - I < 4/-a< 2n - I. It is easily verified that in this case if ,ra is replaced by '2+ I
in Pi. the same strategy as given above guarantees a payoff of 1/2 + 1/4n.

(5) It follows from (1), (3) and (4) that the actual value of the game is 1/2+ 1/4n
if Zn-- I .< ,fa-< Zn, n - ., 2. and that the value lies between I/Z & 1/4n and
1/Z + I/[4(n + 1)] if Zn.. 47< Zn + 1.

It will be noticed that the communicators have an advantage in this case as com-

pared with the first example; roughly, they can get a probability of 1/2 + I/Z 2 as compared
with 1 /2 + 1 /Za, In all of these examples, the best guaranteed probability of being correct

approaches 1/Z as the jammir.g power becomes infinite.

I
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